Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Cytotoxicity and hydrolysis of trans-Ti(IV) complexes of salen ligands: structure-activity relationship studies.

Authors
  • Tzubery, Avia
  • Tshuva, Edit Y
Type
Published Article
Journal
Inorganic Chemistry
Publisher
American Chemical Society
Publication Date
Feb 06, 2012
Volume
51
Issue
3
Pages
1796–1804
Identifiers
DOI: 10.1021/ic202092u
PMID: 22220885
Source
Medline
License
Unknown

Abstract

Eleven bis(dimethylphenolato) Ti(IV) complexes of salen ligands with different steric and electronic properties due to different aromatic substituents at the ortho and para positions are reported, and their cytotoxicity toward HT-29 and OVCAR-1 cells and its dependence on hydrolytic behavior are discussed. Eight complexes of this series were analyzed by X-ray crystallography, confirming the trans geometry of the labile ligands with otherwise relatively similar coordination features to those of cis-salan analogues. Relatively high and similar hydrolytic stability is observed for all complexes, with t(1/2) values for labile ligand hydrolysis of 2-11 h in 10% D(2)O solutions. In contrast, varying cytotoxicities were achieved, identifying selected members as the first trans-Ti(IV) complexes reported as anticancer agents. Steric bulk all around the complex diminished the activity, where a complex with no aromatic substitutions is especially active and complexes substituted particularly at the ortho positions are mostly inactive, including ortho-halogenated and ortho-tert-butylated, with one exception of the ortho-methoxylated complex demonstrating appreciable activity. In contrast, para-halogenation provided the complexes of highest cytotoxic activity in this series (IC(50) as low as 1.0 ± 0.3 μM), with activity exceeding that of cisplatin by up to 15-fold. Reaction of a representative complex with ortho-catechol yielded a "cis"-Ti(IV) complex following rearrangement of the salen ligand on the metal center, with highly similar coordination features and geometry to those of the catecholato salan analogues, suggesting that the complexes operate by similar mechanisms and rearrangement of the salen ligand may occur upon introduction of a suitable chelating target. In additional cytotoxicity measurements, a salen complex was preincubated in the biological medium for varying periods prior to cell addition, revealing that marked cytotoxicity of the salen complex is retained for longer preincubation periods relative to known Ti(IV) complexes, suggesting that the hydrolysis products may also induce cytotoxic effects, thus reducing stability concerns.

Report this publication

Statistics

Seen <100 times