Affordable Access

Cytological studies of heterochromatin function in the Drosophila melanogaster male: autosomal meiotic paring.

Authors
Type
Published Article
Journal
Chromosoma
Publication Date
Volume
72
Issue
3
Pages
293–328
Identifiers
PMID: 111905
Source
Medline

Abstract

In Drosophila melanogaster it is now documented that the different satellite DNA sequences make up the majority of the centromeric heterochromatin of all chromosomes. The most popular hypothesis on this class of DNA is that satellite DNA itself is important to the pairing processes of chromosomes. Evidence in support of such a hypothesis is, however, circumstantial. This hypothesis has been evaluated by direct cytological examination of the meiotic behaviour of heterochromatically and/or euchromatically rear-ranged autosomes in the male. It was found that neither substantial deletions nor rearrangements of the autosomal heterochromatin cause any disruption of meiotic pairing. Autosomal pairing depends on homologs retaining sufficient euchromatic homology. This is the first clear demonstration that the highly repeated satellite DNA sequences in the heterochromatin of the second, third and fourth chromosomes are not important in meiotic pairing, but rather than some euchromatic homology in the autosome is essential to ensure a regular meiotic process. These results on the autosomes, when taken in conjunction with our previous studies on sex chromosome pairing, clearly indicate that satellite DNA is not crucial for male meiotic chromosome pairing of any member of the D. melanogaster genome.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments