Affordable Access

Cycloheximide resistance can be mediated through either ribosomal subunit.

Authors
  • Ca, Sutton
  • Jr, Ares M
  • Rl, Hallberg
Type
Published Article
Journal
Proceedings of the National Academy of Sciences
Publisher
Proceedings of the National Academy of Sciences
Volume
75
Issue
7
Pages
3158–3162
Source
UCSC Bioinformatics biomedical-ucsc
License
Unknown

Abstract

Two cycloheximide-resistant mutants of Tetrahymena thermophila were analyzed to determine the site of their cycloheximide resistance. The mutations in both strains had been previously shown to be genetically dominant and located at separate loci (denoted Chx-A and Chx-B). Strains carrying these mutations were readily distinguished by the extent to which they were resistant to the drug. The homozygous double mutant was more resistant than either single mutant. Cell-free extracts of wild type and of the three mutant strains, assayed for protein synthetic activity by both runoff of natural mRNA and poly(U)-dependent phenylalanine polymerization, demonstrated that in vitro the mutants were all more resistant than the wild type. Further fractionation of the cell-free systems into ribosomes and supernates localized cycloheximide resistance to the ribosome for both Chx-A and Chx-B homozygotes. Ribosome dissociation and pairwise subunit mixing in the in vitro system indicated that ribosome resistance was conferred by the 60S subunit from one strain whereas resistance in the other strain was mediated through the 40S subunit. This was further confirmed by reconstruction of all four cycloheximide-resistance "phenotypes" by mixing ribosomal subunits from appropriate strains. This finding suggests that the mechanisms by which these mutations confer resistance to cycloheximide are different.

Report this publication

Statistics

Seen <100 times