Affordable Access

Access to the full text

Curcumin Attenuates Glucose-Induced Monocyte Chemoattractant Protein-1 Synthesis in Aortic Endothelial Cells by Modulating the Nuclear Factor-ĸB Pathway

Authors
  • Panicker, Sumith Retnamma
  • Kartha, Chandrasekharan Cheranellore
Type
Published Article
Journal
Pharmacology
Publisher
S. Karger AG
Publication Date
Dec 01, 2009
Volume
85
Issue
1
Pages
18–26
Identifiers
DOI: 10.1159/000262325
PMID: 19955845
Source
Karger
Keywords
License
Green
External links

Abstract

Background/Aims: High glucose (HG) induces monocyte chemoattractant protein-1 (MCP-1) synthesis in endothelial cells through nuclear factor ĸB (NFĸB). We investigated whether curcumin, losartan and sodium salicylate (NaSal) attenuate HG-induced MCP-1 synthesis in rat aortic endothelial cells (RAECs) and explored the mechanism of action. Methods: RAECs were stimulated with HG (25 mmol/l) for 24 h in the presence or absence of curcumin, losartan, NaSal or NFĸB inhibitor, Bay 11-0782. The MCP-1 protein and mRNA levels were determined by enzyme-linked immunosorbent assay and real-time reverse transcriptase-polymerase chain reaction, respectively. Nuclear translocation of NFĸB subunit p65 and NFĸB DNA-binding activity was studied using confocal microscopy and electrophoretic mobility shift assay, respectively. Results: A significant increase in the synthesis of MCP-1 protein and mRNA (2-fold) was observed in HG-primed RAECs compared to control glucose (5.5 mmol/l). Curcumin (30 µmol/l) significantly decreased HG-induced MCP-1 protein (74%) and mRNA (53%) synthesis. There was no inhibition of HG-induced MCP-1 protein secretion by losartan and NaSal. In HG-stimulated RAECs, curcumin attenuated the nuclear translocation of p65 and decreased the NFĸB DNA-binding activity. Conclusion: Curcumin blocks HG-induced MCP-1 synthesis in RAECs partly via the NFĸB pathway.

Report this publication

Statistics

Seen <100 times