Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Cross-linking of trans reentrant loops in the Na(+)-citrate transporter CitS of Klebsiella pneumoniae.

Authors
Type
Published Article
Journal
Biochemistry
1520-4995
Publisher
American Chemical Society
Publication Date
Volume
49
Issue
21
Pages
4509–4515
Identifiers
DOI: 10.1021/bi100336s
PMID: 20420430
Source
Medline
License
Unknown

Abstract

The membrane topology model of the Na(+)-citrate transporter CitS of Klebsiella pneumoniae shows a core of two homologous domains with opposite orientation in the membrane and each containing a so-called reentrant loop. A split version of CitS was constructed to study domain interactions and proximity relationships of the putative reentrant loops. Split CitS retained 50% transport activity of the wild-type version in membrane vesicles. Unspecific cross-linking of the purified complex with glutaraldehyde revealed a tetrameric complex with two N and two C domains corresponding to dimeric CitS. The separately expressed domains were not detected in the membrane. Strong interaction between the two domains followed from successful purification of the whole complex by Ni(2+)-NTA chromatography when only one domain was His-tagged. The presence of citrate and/or the co-ion Na(+) during purification did not seem to affect the interaction significantly. Successful disulfide cross-linking was obtained between single cysteine residues introduced in the highly conserved GGNG sequence motif at the vertex of the reentrant loop in the N domain and either of two endogenous cysteine residues at the base of the reentrant loop in the C domain. The disulfide bond was formed within one subunit in the dimer. A model is proposed in which the reentrant loops in the N and C domains are overlapping at the domain interface in the 3D structure where they form (part of) the translocation pathway for substrate and co-ions.

Statistics

Seen <100 times