Affordable Access

Criticalité, identification et jeux de suppression de sommets dans les graphes : des étoiles plein les jeux

Authors
  • Dailly, Antoine
Publication Date
Sep 27, 2018
Source
HAL-INRIA
Keywords
Language
French
License
Unknown
External links

Abstract

Dans cette thèse, nous étudions des problématiques de graphes et de jeux combinatoires. Il existe de nombreux liens entre ces deux domaines : ainsi, les jeux sont un bon moyen de modéliser une opposition dans un problème d'optimisation, et dans l'autre sens plusieurs jeux classiques sont définis sur les graphes. Nous allons étudier deux problèmes de graphes et adapter des jeux combinatoires classiques pour y jouer sur des graphes. Dans un premier temps, nous étudions un problème de criticalité. Un graphe qui vérifie une certaine propriété, mais tel qu'une simple modification (ajout ou suppression d'arête ou de sommet) la lui fait perdre est appelé critique pour cette propriété. Nous nous intéressons au problème des graphes critiques pour la propriété ≪ avoir un diamètre égal à 2 ≫, appelés graphes D2C. La conjecture de Murty-Simon donne une borne supérieure sur le nombre d'arêtes d'un graphe D2C en fonction de son nombre de sommets. Or, des recherches récentes laissent supposer que cette borne peut être améliorée pour les graphes D2C non-bipartis. Nous démontrons donc une borne amoindrie pour une sous-famille de graphes D2C. Dans un deuxième temps, nous considérons un problème d'identification, laquelle consiste à assigner une étiquette à toutes les arêtes ou à tous les sommets d'un graphe, cette assignation devant engendrer une étiquette différente pour chaque sommet. Nous définissons une coloration d'arêtes par des ensembles d'entiers induisant une identification des sommets, et démontrons que cette coloration nécessite au plus un nombre logarithmique d'entiers par rapport à l'ordre du graphe pour l'identifier. Ce résultat est mis en comparaison avec d'autres types de colorations identifiantes, qui nécessitent dans le pire des cas un nombre linéaire d'entiers pour identifier tous les sommets. Dans un troisième temps, nous étudions des jeux de suppression de sommets, qui sont des jeux dans lesquels deux joueurs suppriment d'un graphe des sommets en respectant certaines règles prédéfinies, le premier joueur incapable de jouer perdant la partie. Nous proposons un cadre global pour l'étude de nombreux jeux de suppression de sommets dans les graphes, qui inclut plusieurs jeux classiques comme Arc-Kayles et permet une généralisation des jeux de soustraction et des jeux octaux sur les graphes. Dans leur définition classique, ces jeux ont généralement des comportements réguliers : tous les jeux de soustraction finis sont ultimement périodiques et il est conjecture que c'est également le cas des jeux octaux. Nous étudions plus spécifiquement les jeux de soustraction connexes CSG(S), dans lesquels les joueurs peuvent supprimer k sommets induisant un sous-graphe connexe sans déconnecter le graphe si k ∈ S (avec S fini). Nous démontrons que tous ces jeux sont ultimement périodiques, dans le sens ou pour un graphe et un sommet donnés, un chemin attaché à ce sommet peut être réduit à partir d'un certain rang sans modifier la valeur de Grundy du graphe pour le jeu. Nous trouvons également des résultats de périodicité pure, en particulier sur les étoiles subdivisées : pour certains ensembles S, les chemins des étoiles peuvent être réduits à leur longueur modulo une certaine période sans changer l'issue du jeu. Enfin, nous définissons une variante pondérée de Arc-Kayles, appelée Weighted Arc-Kayles (ou WAK), dans laquelle les joueurs doivent sélectionner une arête pour réduire le poids de ses extrémités, les sommets ayant un poids nul étant supprimés du graphe. Nous montrons une réduction entre WAK et Arc-Kayles, puis que les valeurs de Grundy de WAK sont non-bornées, ce qui répond à une question ouverte sur Arc-Kayles. Nous montrons également que les valeurs de Grundy de WAK sont ultimement périodiques lorsque tous les poids du graphe sauf un sont fixes

Report this publication

Statistics

Seen <100 times