Affordable Access

Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells.

  • Chen, W T
  • Chen, J M
  • Mueller, S C
Published Article
The Journal of cell biology
Publication Date
Sep 01, 1986
PMID: 3528168


We have analyzed the expression and distribution of fibronectin, laminin, and the 140K cell adhesion molecules (140K complex) in embryonic chick lung cells by a combination of biochemical and immunofluorescent approaches. The 140K complex was identified by monoclonal antibody JG22E as a complex of glycoproteins averaging 140,000 Mr and has been implicated in vitro as a receptor for fibronectin and laminin. Our studies provide the first description that the 140K complex is developmentally regulated, and that the 140K complex appears to be involved in adhesion of epithelial and endothelial cells during morphogenesis. We have shown that the 140K complex is expressed in high quantity in embryonic lung cell types, but is markedly reduced in all of the differentiated cell types except smooth muscle. Embryonic lung cells are enriched in 140K complex on portions of cells in close proximity to areas rich in fibronectin. For example, during the formation of airways and alveolar tissues, 140K complex is concentrated at the basal surfaces of epithelial cells adjacent to fibronectin. Likewise, during the angiogenic invasion of capillaries into lung mesenchyme, the 140K complex becomes localized at sites on the basal surfaces of endothelial cells in close contact with fibronectin. Finally, cytodifferentiating lung smooth muscle cells show unusually high levels of 140K complex, fibronectin, and laminin that persist into the adult. In contrast to fibronectin, laminin is found to be uniformly distributed in the basement membranes of differentiating epithelial cells. It becomes prominent in adult alveolar epithelium and airway epithelium concomitant with a reduction or loss of 140K complex and fibronectin at cell-basement membrane attachment sites. Surprisingly, laminin is also present in a punctate pattern in the mesenchyme of early lung buds, however, laminin, fibronectin, and 140K complex are greatly reduced or lost during mesenchymal maturation. Our results are consistent with the active participation of the 140K complex in cell-to-matrix adhesion during morphogenesis of alveolar walls and cytodifferentiation of mesenchymal and smooth muscle cells.


Seen <100 times