Affordable Access

Countable Choice and Compactness

Authors
  • Morillon, Marianne
Type
Preprint
Publication Date
Mar 21, 2008
Submission Date
Mar 21, 2008
Source
arXiv
License
Yellow
External links

Abstract

We work in set-theory without choice ZF. Denoting by AC(N) the countable axiom of choice, we show in ZF+AC(N) that the closed unit ball of a uniformly convex Banach space is compact in the convex topology (an alternative to the weak topology in ZF). We prove that this ball is (closely) convex-compact in the convex topology. Given a set I, a real number p greater or equal to 1 (resp. . p = 0), and some closed subset F of [0, 1]^I which is a bounded subset of l^p(I), we show that AC(N) (resp. DC, the axiom of Dependent Choices) implies the compactness of F.

Report this publication

Statistics

Seen <100 times