Affordable Access

Correlation of intrinsic in vitro and in vivo clearance for drugs metabolized by hepatic UDP-glucuronosyltransferases in rats.

Authors
Type
Published Article
Journal
Drug metabolism and pharmacokinetics
Publication Date
Volume
26
Issue
5
Pages
465–473
Identifiers
PMID: 21727754
Source
Medline

Abstract

A method for quantitatively predicting the hepatic clearance of drugs by UDP-glucuronosyltransferases (UGTs) from in vitro data has not yet been established. We examined the relationship between in vitro and in vivo intrinsic clearance by rat hepatic UGTs using 10 drugs. For these 10 drugs, the in vitro intrinsic clearance by UGTs (CL(int, in vitro)) measured using alamethicin-activated rat liver microsomes was in the range 0.10-4500 ml/min/kg. Microsomal binding (f(u, mic)) was determined to be in the range 0.29-0.95 and the unbound intrinsic clearance (CL(uint, in vitro)) to be in the range 0.11-9600 ml/min/kg. The contribution of rat hepatic glucuronidation to drug elimination was 12.0%-76.6% and in vivo intrinsic clearance by UGTs was 5.7-9000 ml/min/kg. To evaluate the discrepancy between the in vitro and in vivo values, a scaling factor was calculated (CL(int, in vivo)/CL(int, in vitro)); the values were found to be in the range 0.89-110. The average fold error of the scaling factor values incorporating f(u, mic) was closer to unity than that without f(u, mic). The scaling factor values incorporating f(u, mic) were <10 in 8/10 drugs and <2 in 6/10 drugs, indicating a small discrepancy between in vitro and in vivo values. Thus, using alamethicin-activated liver microsomes, incorporating f(u, mic) into CL(int, in vitro), and considering the contribution of glucuronidation may enable us to quantitatively predict in vivo hepatic glucuronidation from in vitro data.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F