Affordable Access

Access to the full text

Correlation of internal carotid artery diameter and carotid flow with asymmetry of the circle of Willis

  • Wu, Te-Chang1, 2, 3
  • Chen, Tai-Yuan3, 2
  • Ko, Ching-Chung3, 4
  • Chen, Jeon-Hor5, 6
  • Lin, Ching-Po1, 1
  • 1 National Yang-Ming University, Taipei, Taiwan , Taipei (Taiwan)
  • 2 Chang Jung Christian University, Tainan, Taiwan , Tainan (Taiwan)
  • 3 Chi-Mei Medical Center, Tainan City, Taiwan , Tainan City (Taiwan)
  • 4 Chia Nan University of Pharmacy and Science, Tainan, Taiwan , Tainan (Taiwan)
  • 5 E-DA Hospital, E-DA Cancer Hospital, I-Shou University, Kaohsiung, Taiwan , Kaohsiung (Taiwan)
  • 6 University of California, Irvine, California, USA , Irvine (United States)
Published Article
BMC Neurology
Springer (Biomed Central Ltd.)
Publication Date
Jun 20, 2020
DOI: 10.1186/s12883-020-01831-z
Springer Nature


BackgroundThe purpose of this study was to clarify the effect of asymmetric COW variants on carotid flow changes, and proposed an easy estimate of the representative carotid flow volume for accurate numerical simulation.MethodsA total of 210 healthy adults receiving magnetic resonance angiography and carotid duplex sonography were included. Three anterior cerebral artery asymmetry (AA) groups were defined based on the diameter ratio difference (DRD) of bilateral A1 segments: AA1 group, one-side A1 aplasia; AA2, A1 DRD ≥ 50%; AA3, A1 DRD between 10 and 50%. Similarly, 3 posterior communicating artery (PcomA) asymmetry (PA) groups were defined: PA1 group, one fetal-origin posterior cerebral artery and absent contralateral PcomA; PA2, PcomA DRD ≥ 50%; PA3, PcomA DRD between 10 and 50%.ResultsWith A1 asymmetry, the ICA diameter of the dominant A1 is significantly greater than the contralateral side. Significant differences of bilateral ICA flow were present in the AA1 and AA2 groups (mean flow difference 42.9 and 30.7%, respectively). Significant bilateral ICA diameter and flow differences were only found in the PA1 group. Linear regression analysis of ICA diameter and flow found a moderately positive correlation between ICA diameter and flow in all AA groups, with a 1 mm increment in vessel diameter corresponding to a 62.6 ml increment of flow volume. The product of bilateral ICA diameter and flow volume difference (ICA-PDF) could be a potential discriminator with a cutoff of 4.31 to predict A1 asymmetry ≥50% with a sensitivity of 0.81 and specificity of 0.76.ConclusionsThe study verifies that A1 asymmetry causes unequal bilateral carotid inflow, and consequently different bilateral ICA diameters. Adjustment of the inflow boundary conditions according to the COW variants would be necessary to improve the accuracy of numerical simulation.

Report this publication


Seen <100 times