Affordable Access

A convenient oxidation of natural glycosphingolipids to their "ceramide acids" for neoglycoconjugation. Bovine serum albumin-glycosylceramide acid conjugates as investigative probes for HIV gp120 coat protein-glycosphingolipid interactions.

Published Article
The Journal of biological chemistry
Publication Date
PMID: 10400707


A new method to cleave the double bond of sphingolipids has been developed. Using limited concentrations of KMnO4 and an excess of NaIO4, in a neutral aqueous tert-butanol solvent system gave nearly quantitative yields of the oxidized product. A variety of natural glycosphingolipids (GSLs): GlcC, GalC, SGC, LC, Gb3C, Gb4C, Gg4C, Gb5C, and GM1C, gave the corresponding acids: 2-hydroxy-3-(N-acyl)-4-(O-glycosyl)-oxybutyric acids, i.e. "glycosyl ceramide acids" (GSL.CCOOH) in excellent yields (80-90%). Deacyl GSLs (dGSLs) were oxidized to acids containing the oligosaccharides devoid of hydrocarbon chains, i.e. "ceramide oligosaccharides" (dGSL. NRR1CCOOH, where R = R1 = H; R = H, R1 = CH3CO; or R = R1 = Me). The efficacy of this method was demonstrated by transforming natural GSLs: GlcC, GalC, GalS, SGC, LC, Gb3C, and Gb4C into neoglycoproteins via coupling glycosyl ceramide acids (except GalS, which was coupled directly) to bovine serum albumin (BSA). Mass spectroscopic analysis of GalC-BSA conjugates, (GalC.CONH)nBSA and (GalS.NHCO)nBSA gave a value of 9 +/- 1 and 16 +/- 2 for n. Neoglycoconjugates derived from GlcC, GalC (type I and II and the behenic analog), SGC, LC, and Gb3C were recognized by the recombinant human immunodeficiency virus coat protein gp120 (rgp120). The GalS conjugate showed significantly reduced binding, and the Gb4C conjugate showed no binding. Thus, rgp120/GSL-BSA interaction requires a terminal galactose and/or glucose residue. Terminal N-acetylgalactosamine containing GSLs are not bound. The ceramide acid conjugates provide a more effective scaffold for presentation of glycone for rgp120 binding than those derived from dGSLs. The retention of receptor specificity of the glycoconjugates was validated by retention of the expected binding specificity of VT1 and VT2e for Gb3C and Gb4C conjugates, respectively. These studies open a new vista in the generation of glycoconjugates from GSLs and further emphasize the role of aglycone in glycolipid recognition.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times