Affordable Access

Controlling ferromagnetic ground states and solitons in thin films and nanowires built from iron phthalocyanine chains

  • Wu, Z
  • Robaschik, P
  • Fleet, L
  • Felton, S
  • Aeppli, G
  • Heutz, S
Publication Date
Apr 22, 2019
Spiral - Imperial College Digital Repository


Iron phthalocyanine (FePc) is a molecular semiconductor whose building blocks are one-dimensional ferromagnetic chains. We show that its optical and magnetic properties are controlled by the growth strategy, obtaining extremely high coercivities of over 1 T and modulating the exchange constant between 15 and 29 K through tuning the crystal phase by switching from thin films with controlled orientations, to ultralong nanowires. Magnetisation measurements are analysed using concepts and formulas with broad applicability to all one-dimensional ferromagnetic chains. They show that FePc is best described by a Heisenberg model with moments preferentially lying in the molecular planes. The chain Hamiltonian is very similar to that for the classic inorganic magnet CsNiF3, but with ferromagnetic rather than antiferromagnetic interchain interactions. The data at large magnetic fields are well-described by the soliton picture, where the dominant degrees of freedom are moving one-dimensional magnetic domain walls and at low temperatures and fields by the “super-Curie-Weiss” law characteristic of nearly one-dimensional xy and Heisenberg ferromagnets. The ability to control the molecular orientation and ferromagnetism of FePc systems, and produce them on flexible substrates, together with excellent transistor characteristics reported previously for phthalocyanine analogues, makes them potentially useful for magneto-optical and spintronic devices.

Report this publication


Seen <100 times