Affordable Access

Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth.

Authors
  • Chan, Yvonne C
  • Hu, Yuewei
  • Chaturongakul, Soraya
  • Files, Kali D
  • Bowen, Barbara M
  • Boor, Kathryn J
  • Wiedmann, Martin
Type
Published Article
Journal
Journal of food protection
Publication Date
Feb 01, 2008
Volume
71
Issue
2
Pages
420–425
Identifiers
PMID: 18326199
Source
Medline
License
Unknown

Abstract

The ability of Listeria monocytogenes to grow at refrigeration temperatures is critical for transmission of this foodborne pathogen. We evaluated the contributions of different transcriptional regulators and two-component regulatory systems to L. monocytogenes cold adaptation and cold growth. L. monocytogenes parent strain 10403S and selected isogenic null mutants in genes encoding four alternative sigma factors (sigB, sigH, sigC, and sigL), two regulators of sigmaB (rsbT and rsbV), two negative regulators (ctsR and hrcA), and 15 two-component response regulators were grown in brain heart infusion broth at 4 degrees C with (i) a high-concentration starting inoculum (10(8) CFU/ml), (ii) a low-concentration starting inoculum (102 CFU/ml), and (iii) a high-concentration starting inoculum of cold-adapted cells. With a starting inoculum of 10(8) CFU/ml, null mutants in genes encoding selected alternative sigma factors (DeltasigH, DeltasigC, and DeltasigL), a negative regulator (DeltactsR), regulators of sigmaB (DeltarsbT and DeltarsbV), and selected two-component response regulators (DeltalisR, Deltalmo1172, and Deltalmo1060) had significantly reduced growth (P < 0.05) compared with the parent strain after 12 days at 4 degrees C. The growth defect for DeltasigL was limited and was not confirmed by optical density (OD600) measurement data. With a starting inoculum of 102 CFU/ml and after monitoring growth at 4 degrees C over 84 days, only the DeltactsR strain had a consistent but limited growth defect; the other mutant strains had either no growth defects or limited growth defects apparent at only one or two of the nine sampling points evaluated during the 84-day growth period (DeltasigB, DeltasigC, and Deltalmo1172). With a 10(8) CFU/ml starting inoculum of cold-adapted cells, none of the mutant strains that had a growth defect when inoculation was performed with cells pregrown at 37 degrees C had reduced growth as compared with the parent strain after 12 days at 4 degrees C, suggesting a specific defect in the ability of these mutant strains to adapt to 4 degrees C after growth at 37 degrees C. Our data indicate (i) selected sigma factors and two-component regulators may contribute to cold adaptation even though two-component regulatory systems, alternative sigma factors, and the negative regulators CtsR and HrcA appear to have limited contributions to L. monocytogenes growth at 4 degrees C in rich media, and (ii) inoculum concentration and pregrowth conditions affect the L. monocytogenes cold-growth phenotype.

Report this publication

Statistics

Seen <100 times