Affordable Access

deepdyve-link
Publisher Website

Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers.

Authors
  • Morgan, N K
  • Walk, C L
  • Bedford, M R
  • Burton, E J
Type
Published Article
Journal
Poultry science
Publication Date
Jul 01, 2015
Volume
94
Issue
7
Pages
1577–1583
Identifiers
DOI: 10.3382/ps/pev108
PMID: 25910902
Source
Medline
Keywords
License
Unknown

Abstract

There is little consensus as to the capability of poultry to utilize dietary phytate without supplemental phytase. Therefore, an experiment was conducted to examine the extent to which endogenous phytase of intestinal and cereal origin contributes to phytate degradation in birds aged 0 to 14 d posthatch. Ross 308 broilers (n = 720) were fed one of 4 experimental diets with differing dietary ingredient combinations and approximate total phytate levels of 10 g/kg, dietary phytase activity analyzed at 460 U/kg, dietary calcium (Ca) levels of 11 g/kg, and nonphytate-phosphorus (P) levels of 4 g/kg. Broiler performance, gizzard, duodenum, jejunum and ileum pH, Ca and P digestibility and solubility, amount of dietary phytate hydrolyzed in the gizzard, jejunum, and ileal digesta phytase activity were analyzed at d 4, 6, 8, 10, 12, and 14 posthatch. Intestinal endogenous phytase activity increased significantly (P < 0.001) between d 4 and 6, resulting in increased phytate hydrolysis in the gizzard (P = 0.003), jejunum (P < 0.001), and ileum (P < 0.001). Phytase activity and phytate hydrolysis continued to increase with age, with a greater phytase activity and associated increase in phytate hydrolysis and mineral utilization between d 10 and 12. Gizzard and jejunum Ca and P solubility and ileal Ca and P digestibility increased significantly (P < 0.001), and gastrointestinal pH decreased significantly (P < 0.001) between d 4 and 6. By d 14, phytase activity recovered in the ileum was approximately 45 U/kg. There were strong correlations between phytase activity measured in the ileum and phytate hydrolyzed in the gizzard (r = 0.905, P < 0.001), jejunum (r = 0.901, P = 0.023), and ileum (r = 0.938, P = 0.042). This study shows intestinal- and dietary-derived endogenous phytase activity is responsible for phytate-P hydrolysis in broilers.

Report this publication

Statistics

Seen <100 times