Affordable Access

Contribution à l’optimisation des systèmes de transmission optiques cohérents (Nx100 Gbit/s) utilisant le multiplexage en polarisation par des formats de modulation en phase et une conception de ligne limitant l’impact des effets non-linéaires

Authors
  • Seck, Aida
Publication Date
Feb 18, 2014
Source
HAL-UPMC
Keywords
Language
French
License
Unknown
External links

Abstract

La demande en capacité liée à la transmission de tout type d’information (voix, vidéos, données, etc.) ne cesse de croître. Afin de répondre à cette demande croissante, de nouvelles générations de systèmes de communication multiplexés en longueur d’onde transmettant des débits élevés d’information par canal (100 Gbit/s ou plus) doivent être conçues. En plus des fibres ayant de très faibles pertes, des amplificateurs à fibre dopée à l’Erbium et du multiplexage en longueur d’onde, des technologies sont mises en place, comme notamment le multiplexage en polarisation, la détection cohérente, les formats de modulation multi-niveaux et plus récemment le multiplexage spatial. Des interrogations résident sur l’impact du multiplexage en polarisation ainsi qu’un développement vers des formats de modulation plus évolués incluant modulation de phase et multiplexage en polarisation. Dans cette thèse, afin de contribuer à l’augmentation du produit capacité x distance dans les systèmes de transmission Nx100 Gbit/s par fibre optique également multiplexés en polarisation et utilisant la détection cohérente, nous avons étudié d’une part, la mise en forme spectrale des signaux à l’émission pour augmenter la densité spectrale d’information (ISD: Information Spectral density). Dans cette optique, nous avons étudié l’impact du filtrage étroit gaussien du second ordre et de la mise en forme spectrale en racine de cosinus surélevé (RRC: Root Raised Cosine) sur les signaux émis dans le cas de modulations en Polarization Division Multiplexed-Quaternary Phase Shift Keying (PDM-QPSK) et Polarization-Switched-Quaternary Phase Shift Keying (PS-QPSK). Ceci a été réalisé en simulation numérique en considérant un espacement spectral entre les différents canaux variable. Nous avons montré qu’en tenant compte à la fois du facteur de qualité maximal et de la densité spectrale d’information, l’application de la mise en forme RRC sur des signaux modulés en PS-QPSK, fournit de meilleures performances de transmission dans une configuration où toute la dispersion est compensée en fin de propagation, pour toutes les valeurs d’espacement spectral étudiées. D’autre part, nous nous sommes intéressés aux effets non-linéaires qui limitent la portée de ces systèmes en dégradant pendant la propagation, les symboles émis, par les interactions entre des symboles d’un même canal, entre canaux ou modes de polarisation. La compréhension et la réduction de l’impact des effets non-linéaires est indispensable lorsqu’on veut utiliser certaines technologies pour augmenter la densité spectrale d’information. L’utilisation du multiplexage en polarisation par exemple, se heurte aux dégradations causées par les effets non-linéaires car de nouvelles interactions entre symboles sont présentes pendant la propagation. Par conséquent le développement des futurs systèmes ayant des débits plus élevés de 400 Gbit/s et 1 Tbit/s par canal passe par une diminution de l’impact des effets non-linéaires. Nous avons établi dans ce travail de thèse, des règles de conception permettant de réduire l’impact des effets non-linéaires entre polarisation dans les systèmes de transmission optiques considérés

Report this publication

Statistics

Seen <100 times