Affordable Access

Construction of the seed-coat cDNA microarray and screening of differentially expressed genes in barley.

Authors
  • Pang, Jin-Song
  • He, Meng-Yuan
  • Liu, Bao
Type
Published Article
Journal
Acta biochimica et biophysica Sinica
Publication Date
Oct 01, 2004
Volume
36
Issue
10
Pages
695–700
Identifiers
PMID: 15483750
Source
Medline
License
Unknown

Abstract

Some barley mutants can synthesize neither anthocyanins nor proanthocyanidins in the seed coat, which is related to several genes in locus Ant13, but the exact model of action remains unknown. We used the cDNA microarray technology with barley transcription-deficient mutant (ant13-152) that does not synthesize proanthocyanidins as the tester, and its wild type genotype (Triumph) as the driver, to study this question. Six-thousand and forty-eight clones from the wild type Morex testa+pericarp cDNA library were amplified using PCR, and the DNA fragments were spotted on commercial amino-modified glass slide as microarray. The mRNAs from the developing seed coat (8-15 days) of both the mutant and the wild-type barley plants were isolated, and labeled respectively with Cy3-dUTP and Cy5-dUTP when reversely transcribed to cDNAs. The labeled cDNAs were used as probes, mixed at the same molar concentration, and hybridized with the DNA fragments on the slide. Seventy clones exhibiting marked differential expression (ratio>4) were identified from the microarray. All the 25 cDNA clones that showed an over-expression in wild type in comparison to the mutant ant13-152 were sequenced. It was found that most of these overexpressing clones were transcription/translation and hordein-associated genes. These results have laid a solid material basis for further elucidation of the metabolic pathway in proanthocyanidin synthesis in barley and likely other plants.

Report this publication

Statistics

Seen <100 times