Affordable Access

CONSTRUCTION EQUIPMENT FUEL CONSUMPTION DURING IDLING : Characterization using multivariate data analysis at Volvo CE

Authors
  • Hassani, Mujtaba
Publication Date
Jan 01, 2020
Source
DiVA - Academic Archive On-line
Keywords
Language
English
License
Green
External links

Abstract

Human activities have increased the concentration of CO2 into the atmosphere, thus it has caused global warming. Construction equipment are semi-stationary machines and spend at least 30% of its life time during idling. The majority of the construction equipment is diesel powered and emits toxic emission into the environment. In this work, the idling will be investigated through adopting several statistical regressions models to quantify the fuel consumption of construction equipment during idling. The regression models which are studied in this work: Multivariate Linear Regression (ML-R), Support Vector Machine Regression (SVM-R), Gaussian Process regression (GP-R), Artificial Neural Network (ANN), Partial Least Square Regression (PLS-R) and Principal Components Regression (PC-R). Findings show that pre-processing has a significant impact on the goodness of the prediction of the explanatory data analysis in this field. Moreover, through mean centering and application of the max-min scaling feature, the accuracy of models increased remarkably. ANN and GP-R had the highest accuracy (99%), PLS-R was the third accurate model (98% accuracy), ML-R was the fourth-best model (97% accuracy), SVM-R was the fifth-best (73% accuracy) and the lowest accuracy was recorded for PC-R (83% accuracy). The second part of this project estimated the CO2 emission based on the fuel used and by adopting the NONROAD2008 model.  Keywords: 

Report this publication

Statistics

Seen <100 times