Affordable Access

Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI).

Authors
Type
Published Article
Journal
Journal of bacteriology
Publication Date
Volume
180
Issue
20
Pages
5313–5318
Identifiers
PMID: 9765561
Source
Medline
License
Unknown

Abstract

Escherichia coli K-12 WaaO (formerly known as RfaI) is a nonprocessive alpha-1,3 glucosyltransferase, involved in the synthesis of the R core of lipopolysaccharide. By comparing the amino acid sequence of WaaO with those of 11 homologous alpha-glycosyltransferases, four strictly conserved regions, I, II, III, and IV, were identified. Since functionally related transferases are predicted to have a similar architecture in the catalytic sites, it is assumed that these four regions are directly involved in the formation of alpha-glycosidic linkage from alpha-linked nucleotide diphospho-sugar donor. Hydrophobic cluster analysis revealed a conserved domain at the N termini of these alpha-glycosyltransferases. This domain was similar to that previously reported for beta-glycosyltransferases. Thus, this domain is likely to be involved in the formation of beta-glycosidic linkage between the donor sugar and the enzyme at the first step of the reaction. Site-directed mutagenesis analysis of E. coli K-12 WaaO revealed four critical amino acid residues.

Statistics

Seen <100 times