Affordable Access

Access to the full text

Conformally soft photons and gravitons

Authors
  • Donnay, Laura1, 2
  • Puhm, Andrea1, 2, 3
  • Strominger, Andrew1, 2
  • 1 Harvard University, Center for the Fundamental Laws of Nature, 17 Oxford Street, Cambridge, MA, 02138, U.S.A. , Cambridge (United States)
  • 2 Harvard University, Black Hole Initiative, 20 Garden Street, Cambridge, MA, 02138, U.S.A. , Cambridge (United States)
  • 3 Centre de Physique Théorique, École Polytechnique, CNRS, Route de Saclay, Palaiseau, 91128, France , Palaiseau (France)
Type
Published Article
Journal
Journal of High Energy Physics
Publisher
Springer-Verlag
Publication Date
Jan 24, 2019
Volume
2019
Issue
1
Identifiers
DOI: 10.1007/JHEP01(2019)184
Source
Springer Nature
Keywords
License
Yellow

Abstract

The four-dimensional S-matrix is reconsidered as a correlator on the celestial sphere at null infinity. Asymptotic particle states can be characterized by the point at which they enter or exit the celestial sphere as well as their SL(2, ℂ) Lorentz quantum numbers: namely their conformal scaling dimension and spin h±h¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ h\pm \overline{h} $$\end{document} instead of the energy and momentum. This characterization precludes the notion of a soft particle whose energy is taken to zero. We propose it should be replaced by the notion of a conformally soft particle with h = 0 or h¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{h} $$\end{document} = 0. For photons we explicitly construct conformally soft SL(2, ℂ) currents with dimensions (1, 0) and identify them with the generator of a U(1) Kac-Moody symmetry on the celestial sphere. For gravity the generator of celestial conformal symmetry is constructed from a (2, 0) SL(2, ℂ) primary wavefunction. Interestingly, BMS supertranslations are generated by a spin-one weight (32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{3}{2} $$\end{document}, 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document}) operator, which nevertheless shares holomorphic characteristics of a conformally soft operator. This is because the right hand side of its OPE with a weight (h, h¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \overline{h} $$\end{document}) operator Oh,h¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{O}}_{h,\overline{h}} $$\end{document} involves the shifted operator Oh+12,h¯+12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal{O}}_{h+\frac{1}{2},\overline{h}+\frac{1}{2}} $$\end{document}. This OPE relation looks quite unusual from the celestial CFT2 perspective but is equivalent to the leading soft graviton theorem and may usefully constrain celestial correlators in quantum gravity.

Report this publication

Statistics

Seen <100 times