Affordable Access

Conditioned cortical slow potential responses in urethane anesthetized rats.

Authors
Type
Published Article
Journal
The International journal of neuroscience
Publication Date
Volume
25
Issue
3-4
Pages
207–218
Identifiers
PMID: 3872286
Source
Medline
License
Unknown

Abstract

Cortical slow potential (SP) responses to tone or light stimuli preceding medial forebrain bundle (MFB) stimulation were recorded in urethane anesthetized rats. In the first study, rats were implanted with Ag-AgCl electrodes for recording frontal cortex SPs as well as monopolar electrodes for MFB stimulation. Following recovery, optimum stimulation parameters for SP conditioning were determined for each rat during self-stimulation sessions. These animals were then subjected to extensive associative conditioning in the unanesthetized state. Trials were presented at variable intervals and a 2-sec tone preceded a single 0.5 sec train of MFB stimulation. Negative SP responses developed with training and responses of similar waveform and amplitude were observed in the same animals under urethane anesthesia. Other rats were implanted with MFB stimulating electrodes and, after recovery, stimulation parameters were determined as above but the animals were not subjected to the conditioning procedure prior to urethane administration. Under urethane anesthesia, Ag-AgCl electrodes were placed on the dura over frontal cortex for recording SP responses during pseudoconditioning, conditioning, extinction and retraining trials, using either light or tone stimuli. Negative bilateral SP responses to the tone or light were minimal or nonexistent during pseudoconditioning, developed gradually with pairing, diminished markedly during extinction and returned to maximum amplitude with retraining. The SP responses also reflected discrimination between reinforced and nonreinforced tone and light stimuli as well as reversal conditioning. Furthermore, turning off a light could also serve as the conditioned stimulus for SP response generation. Cortical slow potential responses can be conditioned in urethane anesthetized rats. Therefore, it may be possible to apply additional neurophysiological techniques in these animals to investigate event-related slow potential mechanisms.

Statistics

Seen <100 times