Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Computation of reduced energy input current stimuli for neuron phase models.

Authors
Type
Published Article
Journal
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
1557-170X
Publication Date
Volume
2014
Pages
4847–4851
Identifiers
DOI: 10.1109/EMBC.2014.6944709
PMID: 25571077
Source
Medline
License
Unknown

Abstract

A regularly spiking neuron can be studied using a phase model. The effect of an input stimulus current on the phase time derivative is captured by a phase response curve. This paper adapts a technique that was previously applied to conductance-based models to discover optimal input stimulus currents for phase models. First, the neuron phase response θ(t) due to an input stimulus current i(t) is computed using a phase model. The resulting θ(t) is taken to be a reference phase r(t). Second, an optimal input stimulus current i(*)(t) is computed to minimize a weighted sum of the square-integral `energy' of i(*)(t) and the tracking error between the reference phase r(t) and the phase response due to i(*)(t). The balance between the conflicting requirements of energy and tracking error minimization is controlled by a single parameter. The generated optimal current i(*)t) is then compared to the input current i(t) which was used to generate the reference phase r(t). This technique was applied to two neuron phase models; in each case, the current i(*)(t) generates a phase response similar to the reference phase r(t), and the optimal current i(*)(t) has a lower `energy' than the square-integral of i(t). For constant i(t), the optimal current i(*)(t) need not be constant in time. In fact, i(*)(t) is large (possibly even larger than i(t)) for regions where the phase response curve indicates a stronger sensitivity to the input stimulus current, and smaller in regions of reduced sensitivity.

Statistics

Seen <100 times