Affordable Access

Components of responses of a population of DSCT neurons to muscle stretch and contraction.

Authors
Type
Published Article
Journal
Journal of neurophysiology
Publication Date
Volume
61
Issue
2
Pages
456–465
Identifiers
PMID: 2918367
Source
Medline

Abstract

1. Impulse activity of 264 units of the dorsal spinocerebellar tract (DSCT) was recorded during random contraction or stretch in hindlimb muscles. Contractions were evoked in either the isolated gastrocnemius-soleus (GS) muscles or the intact limb during crossed-extensor reflexes; stretches were applied to the isolated GS. 2. The time course of poststimulus changes in spike activity of DSCT neurons was determined from the response probability function (RPF; Ref. 15). These data were analyzed using principal component and cluster analysis to group the responses according to the RPF waveforms. 3. The responses to each type of stimulus displayed a remarkable similarity in time course, regardless of the type of stimulus used. The responses were also similar to those observed previously during single shock nerve stimulation (14). 4. The most reasonable explanation for these results is that the time course of excitability changes in DSCT neurons is determined less by particular types of receptors or patterns of afferent fiber activity than by the circuitry and afferent pathways impinging on the neurons of the DSCT. 5. The functional organization of DSCT suggested by these results includes a wide divergence from sensory receptors along polysynaptic pathways to DSCT neurons and considerable convergence onto each neuron from a diversity of receptors. Individual DSCT cells may respond to stimuli with one of a few stereo-typical response patterns yet the distribution of those patterns among the units of the DSCT population may be unique for each stimulus.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments