Affordable Access

A completely integrable system on $G_2$ coadjoint orbits

Authors
  • Lane, Jeremy
Type
Preprint
Publication Date
May 23, 2016
Submission Date
May 05, 2016
Identifiers
arXiv ID: 1605.01676
Source
arXiv
License
Yellow
External links

Abstract

We construct a Gelfand-Zeitlin system on a one-parameter family of $G_2$ coadjoint orbits that are multiplicity-free Hamiltonian $SU(3)$-spaces. Using this system we prove a lower bound for the Gromov width of these orbits. This lower bound agrees with the known upper bound.

Report this publication

Statistics

Seen <100 times