Affordable Access

Access to the full text

Comparison of the Contaminants in the Wastewater Produced in the Ex Situ Underground Ortho- and Meta-Lignite Gasification

Authors
  • Kapusta, Krzysztof1
  • Stańczyk, Krzysztof1
  • Wiatowski, Marian1
  • 1 Główny Instytut Górnictwa (Central Mining Institute), Department of Energy Saving and Air Protection, Plac Gwarków 1, Katowice, 40-166, Poland , Katowice (Poland)
Type
Published Article
Journal
Water Air & Soil Pollution
Publisher
Springer-Verlag
Publication Date
Aug 10, 2019
Volume
230
Issue
8
Identifiers
DOI: 10.1007/s11270-019-4254-2
Source
Springer Nature
Keywords
License
Green

Abstract

This work comprises results of the laboratory tests on formation and potential release of contaminants from underground gasification of lignites. Four large scale and multi-day trials were carried out using ex-situ gasification facilities. Two different kinds of lignite were tested, i.e. Velenje lignite (Slovenia) and Oltenia lignite (Romania). Gasification tests were conducted in the artificial coal seams under two distinct pressure regimes—atmospheric and high pressure regime (35 bar and 10 bar for the Velenje and Oltenia samples respectively). The UCG wastewater samples were periodically collected from the gas purification module to measure the rate of the wastewater and contaminants production at each phase of the experiment and to assess the effect of gasification pressure and lignite physicochemical properties. The group of target contaminants included: phenols, aromatic hydrocarbons, and some non-specific water parameters. The effect of gasification pressure was confirmed, especially for BTEX and phenols and significant drops in the contents of these compounds were observed at elevated pressures. The effect of pressure was more pronounced for the geologically older coal (Velenje), i.e. drop in the average concentrations from 1994 μg/l (atmospheric) to 804 μg/l (35 bar) and from 733 mg/l (atmospheric) to 17 mg/l (35 bar) for BTEX and total phenols, respectively. The differences in the macromolecular structure and ash content of the both coals were found to be the main reason behind the differences in the contents of organic and inorganic species respectively. The study also shown that composition of UCG wastewaters significantly varied over the time of the particular experiments, which reflected changes in the gasification thermodynamic conditions and development of oxidation and pyrolysis zones. During the atmospheric gasification experiments, the values of BTEX for the Velenje lignite dropped from 3434 μg/l to 1364 μg/l and for the Oltenia lignite from 1833 μg/l to 978 μg/l. A similar downward trend in the concentrations of BTEX was observed for the pressurized experiments. For the Velenje trial a drop from 1111.6 μg/l to 211.2 μg/l and for the Oltenia - from 1695 μg/l to 688 μg/l was observed. Concentrations of phenolic compounds during the atmospheric gasification experiments varied significantly during both atmospheric trials and no significant trends were noticed.

Report this publication

Statistics

Seen <100 times