Affordable Access

deepdyve-link
Publisher Website

Communication: MULTIMODE calculations of low-lying vibrational states of NO3 using an adiabatic potential energy surface.

Authors
  • Homayoon, Zahra
  • Bowman, Joel M
Type
Published Article
Journal
The Journal of Chemical Physics
Publisher
AIP Publishing
Publication Date
Oct 28, 2014
Volume
141
Issue
16
Pages
161104–161104
Identifiers
DOI: 10.1063/1.4900734
PMID: 25362265
Source
Medline
License
Unknown

Abstract

A semi-global, permutationally invariant potential energy surface for NO3 is constructed from a subset of roughly 5000 Multi-State CASPT2 calculations (MS-CAS(17e,13o)PT2/aug-cc-pVTZ) reported by Morokuma and co-workers [H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput. 8, 2600 (2012)]. The PES, with empirical adjustments to modify the energies of two fundamentals and a hot-band transition, is used in full-dimensional vibrational self-consistent field/virtual state configuration interaction calculations using the code MULTIMODE. Vibrational energies and assignments are given for the fundamentals and low-lying combination states, including two that have been the focus of some controversy. Energies of a number of overtone and combinations are shown to be in good agreement with experiment and previous calculations using a model vibronic Hamiltonian [C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012)]. Notably, the fundamental v3 is calculated to be at 1099 cm(-1) in accord with the prediction from the vibronic analysis, although roughly 30 cm(-1) higher. The state at 1493 cm(-1) is assigned as v3 + v4, which is also in agreement with the vibronic analysis and some experiments. Vibrational energies for (15)NO3 are also presented and these are also in good agreement with experiment.

Report this publication

Statistics

Seen <100 times