Affordable Access

Access to the full text

Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition

Authors
  • Voeller, Julie1
  • Erbe, Amy K.1
  • Slowinski, Jacob1
  • Rasmussen, Kayla1
  • Carlson, Peter M.1
  • Hoefges, Anna1
  • VandenHeuvel, Sabrina1
  • Stuckwisch, Ashley1
  • Wang, Xing2
  • Gillies, Stephen D.3
  • Patel, Ravi B.1
  • Farrel, Alvin4
  • Rokita, Jo Lynne4
  • Maris, John4
  • Hank, Jacquelyn A.1
  • Morris, Zachary S.1
  • Rakhmilevich, Alexander L.1
  • Sondel, Paul M.1, 1
  • 1 University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA , Madison (United States)
  • 2 University of Wisconsin, Madison, WI, USA , Madison (United States)
  • 3 Provenance Biopharmaceuticals, Carlisle, MA, USA , Carlisle (United States)
  • 4 Children’s Hospital of Philadelphia, Philadelphia, PA, USA , Philadelphia (United States)
Type
Published Article
Journal
Journal for ImmunoTherapy of Cancer
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Dec 06, 2019
Volume
7
Issue
1
Identifiers
DOI: 10.1186/s40425-019-0823-6
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundUnlike some adult cancers, most pediatric cancers are considered immunologically cold and generally less responsive to immunotherapy. While immunotherapy has already been incorporated into standard of care treatment for pediatric patients with high-risk neuroblastoma, overall survival remains poor. In a mouse melanoma model, we found that radiation and tumor-specific immunocytokine generate an in situ vaccination response in syngeneic mice bearing large tumors. Here, we tested whether a novel immunotherapeutic approach utilizing radiation and immunocytokine together with innate immune stimulation could generate a potent antitumor response with immunologic memory against syngeneic murine neuroblastoma.MethodsMice bearing disialoganglioside (GD2)-expressing neuroblastoma tumors (either NXS2 or 9464D-GD2) were treated with radiation and immunotherapy (including anti-GD2 immunocytokine with or without anti-CTLA-4, CpG and anti-CD40 monoclonal antibody). Tumor growth, animal survival and immune cell infiltrate were analyzed in the tumor microenvironment in response to various treatment regimens.ResultsNXS2 had a moderate tumor mutation burden (TMB) while N-MYC driven 9464D-GD2 had a low TMB, therefore the latter served as a better model for high-risk neuroblastoma (an immunologically cold tumor). Radiation and immunocytokine induced a potent in situ vaccination response against NXS2 tumors, but not in the 9464D-GD2 tumor model. Addition of checkpoint blockade with anti-CTLA-4 was not effective alone against 9464D-GD2 tumors; inclusion of CpG and anti-CD40 achieved a potent antitumor response with decreased T regulatory cells within the tumors and induction of immunologic memory.ConclusionsThese data suggest that a combined innate and adaptive immunotherapeutic approach can be effective against immunologically cold syngeneic murine neuroblastoma. Further testing is needed to determine how these concepts might translate into development of more effective immunotherapeutic approaches for the treatment of clinically high-risk neuroblastoma.

Report this publication

Statistics

Seen <100 times