Affordable Access

Combinatorial properties of some cellular atomata

Authors
  • Rossin, Dominique
Publication Date
Dec 18, 2000
Source
Hal-Diderot
Keywords
License
Unknown
External links

Abstract

L'etude et la comprehension de phenomenes naturels qu'il<br />semble difficile de predire, tels les<br />tremblements de terre et les raz de maree intriguent depuis quelques<br />temps un certain nombre de physiciens. En effet, il semble que les<br />modeles classiques bases sur des fonctions d'etat continues<br />peuvent difficilement expliquer les phenomenes observes.<br /><br />En 1987, Bak, Tang et Wiesenfeld introduisent un modele base<br /> sur un automate particulier dont l'etude experimentale montre<br /> des caracteristiques proches de celles observees pour des<br /> tremblements de terre. Cet automate est appele automate du tas de sable.<br /><br /> En 1990, Dhar, Ruelle, Sen et<br />Verma etudient les proprietes mathematiques<br />de l'automate du tas de sable. Cet article jette les bases d'une théorie algebrique et combinatoire des<br />etats critiques du systeme en montrant que ceux-ci forment un<br />groupe abelien fini.<br /><br />Cette these porte essentiellement sur l'etude de ce groupe d'un<br />point de vue algorithmique, combinatoire et algebrique. Nous<br />etudions dans un premier temps la complexite de l'operateur de<br />groupe. Puis nous etudions le groupe sur quelques familles de<br />graphes connues avant de montrer que le groupe d'un graphe planaire<br />est isomorphe au groupe de chacun de ses duaux geometriques.<br /><br />Nous montrons comment associer à un groupe abelien fini un<br />idéal de polynomes et dans le cas du groupe du Tas de Sable, nous<br />donnerons une caracterisation de l'operateur de groupe en terme de<br />reduction de polynome.

Report this publication

Statistics

Seen <100 times