Affordable Access

Access to the full text

Co-Existence of Iron Oxide Nanoparticles and Manganese Oxide Nanorods as Decoration of Hollow Carbon Spheres for Boosting Electrochemical Performance of Li-Ion Battery

Authors
  • wenelska;, karolina
Publication Date
Nov 15, 2021
Identifiers
DOI: 10.3390/ma14226902
OAI: oai:mdpi.com:/1996-1944/14/22/6902/
Source
MDPI
Keywords
Language
English
License
Green
External links

Abstract

Here, we report that mesoporous hollow carbon spheres (HCS) can be simultaneously functionalized: (i) endohedrally by iron oxide nanoparticle and (ii) egzohedrally by manganese oxide nanorods (FexOy/MnO2/HCS). Detailed analysis reveals a high degree of graphitization of HCS structures. The mesoporous nature of carbon is further confirmed by N2 sorption/desorption and transmission electron microscopy (TEM) studies. The fabricated molecular heterostructure was tested as the anode material of a lithium-ion battery (LIB). For both metal oxides under study, their mixture stored in HCS yielded a significant increase in electrochemical performance. Its electrochemical response was compared to the HCS decorated with a single component of the respective metal oxide applied as a LIB electrode. The discharge capacity of FexOy/MnO2/HCS is 1091 mAhg−1 at 5 Ag–1, and the corresponding coulombic efficiency (CE) is as high as 98%. Therefore, the addition of MnO2 in the form of nanorods allows for boosting the nanocomposite electrochemical performance with respect to the spherical nanoparticles due to better reversible capacity and cycling performance. Thus, the structure has great potential application in the LIB field.

Report this publication

Statistics

Seen <100 times