Affordable Access

Co-bootstrapping Saliency.

Authors
  • Lu, Huchuan
  • Zhang, Xiaoning
  • Jinqing, Qi
  • Tong, Na
  • Ruan, Xiang
  • Yang, Ming-Hsuan
Type
Published Article
Journal
IEEE Transactions on Image Processing
Publisher
Institute of Electrical and Electronics Engineers
Publication Date
Nov 11, 2016
Identifiers
PMID: 27849531
Source
Medline
License
Unknown

Abstract

In this paper, we propose a visual saliency detection algorithm to explore the fusion of various saliency models in a manner of bootstrap learning. Firstly, an original bootstrapping model, which combines both weak and strong saliency models, is constructed. In this model, image priors are exploied to generate an original weak saliency model, which provides training samples for a strong model. Then, a strong classifier is learned based on the samples extracted from the weak model. We use this classifier to classify all the salient and non-salient superpixels in an input image. To further improve the detection performance, multiscale saliency maps of weak and strong model are integrated respectively. The final result is the combination of the weak and strong saliency maps. The original model indicates that the overall performance of the proposed algorithm is largely affected by the quality of weak saliency model. Therefore, we propose a co-bootstrapping mechanism, which integrates advantages of different saliency methods to construct the weak saliency model thus addresses the problem and achieves a better performance. Extensive experiments on benchmark data sets demonstrate that the proposed algorithm outperforms the state-of-the-art methods.

Report this publication

Statistics

Seen <100 times