Affordable Access

CO(2) response element and corresponding trans-acting factor of the promoter for ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Synechococcus sp. PCC7002 found by an improved electrophoretic mobility shift assay.

Authors
Type
Published Article
Journal
Plant & cell physiology
Publication Date
Volume
43
Issue
6
Pages
660–667
Identifiers
PMID: 12091720
Source
Medline
License
Unknown

Abstract

We analyzed the promoter of the genes encoding the ribulose-1,5-bisphosphate carboxylase/oxygenase (rbc) in the cyanobacterium Synechococcus sp. PCC7002 and localized the CO(2)-regulatory element. Cyanobacterial transformants were constructed with several DNA segments of the rbc promoter fused to the chloramphenicol acetyltransferase (CAT) gene, and their acetyltransferase activities were analyzed under 0.03% and 1% CO(2) conditions. We found that the AT-rich element localized from -262 to -291 relative to the rbc translation-starting site was required for CO(2)-dependent repression. Fluorescent-labeled oligonucleotide probes of identical sequence to the AT-rich element were reacted with protein extracts from cells cultured under conditions of low and high CO(2) atmospheric content. We detected a gel retardation complex of a strong signal intensity in extracts from cells cultured under 15% CO(2), but only a weak signal from cells cultured under 1% CO(2). Moreover, a DNA affinity precipitation assay identified a 16-kDa protein that bound to nucleotide sequences within the AT-rich element. The partial amino acid sequence of the protein was similar to the deduced protein sequences of ORF129 and ORF155 from Synechocystis 6803. Our findings suggest that the AT-rich element plays a role as a negative CO(2)-regulatory element and its trans-acting factor possibly regulates the rbc transcription in response to CO(2) levels.

Statistics

Seen <100 times