Affordable Access

Characterization of the yrbA Gene of Bacillus subtilis, Involved in Resistance and Germination of Spores

American Society for Microbiology
Publication Date
  • Biology


Insertional inactivation of the yrbA gene of Bacillus subtilis reduced the resistance of the mutant spores to lysozyme. The yrbA mutant spores lost their optical density at the same rate as the wild-type spores upon incubation with l-alanine but became only phase gray and did not swell. The response of the mutant spores to a combination of asparagine, glucose, fructose, and KCl was also extremely poor; in this medium yrbA spores exhibited only a small loss in optical density and gave a mixture of phase-bright, -gray, and -dark spores. Northern blot analysis of yrbA transcripts in various sig mutants indicated that yrbA was transcribed by RNA polymerase with ςE beginning at 2 h after the start of sporulation. The yrbA promoter was localized by primer extension analysis, and the sequences of the −35 (TCATAAC) and −10 (CATATGT) regions were similar to the consensus sequences of genes recognized by ςE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of proteins solubilized from intact yrbA mutant spores showed an alteration in the protein profile, as 31- and 36-kDa proteins, identified as YrbA and CotG, respectively, were absent, along with some other minor changes. Electron microscopic examination of yrbA spores revealed changes in the spore coat, including a reduction in the density and thickness of the outer layer and the appearance of an inner coat layer-like structure around the outside of the coat. This abnormal coat structure was also observed on the outside of the developing forespores of the yrbA mutant. These results suggest that YrbA is involved in assembly of some coat proteins which have roles in both spore lysozyme resistance and germination.


Seen <100 times