Affordable Access

Publisher Website

Characterization of Na,K-ATPase and H,K-ATPase enzymes with glycosylation-deficient beta-subunit variants by voltage-clamp fluorometry in Xenopus oocytes.

Authors
Type
Published Article
Journal
Biochemistry
0006-2960
Publisher
American Chemical Society
Publication Date
Volume
47
Issue
14
Pages
4288–4297
Identifiers
DOI: 10.1021/bi800092k
PMID: 18341291
Source
Medline

Abstract

The role of N-linked glycosylation of beta-subunits in the functional properties of the oligomeric P-type ATPases Na,K- and H,K-ATPase has been examined by expressing glycosylation-deficient Asn-to-Gln beta-variants in Xenopus oocytes. For both ATPases, the absence of the huge N-linked oligosaccharide moiety on the beta-subunit does not affect alpha/beta coassembly, plasma membrane delivery or functional activity of the holoenzyme. Whereas this is in line with several previous glycosylation studies on Na,K-ATPase, this is the first report showing that the cell surface delivery and enzymatic activity of the gastric H,K-ATPase is unaffected by the lack of N-linked glycosylation. Sulfhydryl-specific labeling of introduced cysteine reporter sites with the environmentally sensitive fluorophore tetramethylrhodamine-6-maleimide (TMRM) upon expression in Xenopus oocytes enabled us to further investigate potential effects of the N-glycans on more subtle enzymatic properties, like the distribution between E 1P/E 2P states of the catalytic cycle and the kinetics of the E 1P/E 2P conformational transition under presteady state conditions. For both Na,K-ATPase and H,K-ATPase, we observed differences in neither the voltage-dependent E 1P/E 2P ratio nor the kinetics of the E 1P/E 2P transition between holoenzymes comprising glycosylated and glycosylation-deficient beta-subunits. We conclude that the N-linked glycans on these essential accessory subunits of oligomeric P-type ATPases are dispensable for proper folding, membrane stabilization of the alpha-subunit and transport function itself. Glycosylation is rather important for other cellular functions not relevant in the oocyte expression system, such as intercellular interactions or basolateral versus apical targeting in polarized cells, as demonstrated in other expression systems.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F