Affordable Access

Characteristics of canine coronary resistance arteries: importance of endothelium.

  • Myers, P R
  • Banitt, P F
  • Guerra, R Jr
  • Harrison, D G
Published Article
The American journal of physiology
Publication Date
Aug 01, 1989
2 Pt 2
PMID: 2788367


Canine coronary resistance vessels were studied in vitro to examine the role of the endothelium in modulating responses to acetylcholine, vasopressin, and thrombin and to compare these responses to those found in large epicardial vessels. Acetylcholine had no effect on passively distended microvessels; however, after preconstriction with the thromboxane analogue, U 46619 caused dose-dependent vasodilation [50% effective concentration (EC50), 0.05 microM; maximum response, 97.9 +/- 2.1% relaxation]. Large epicardial arterial rings studied in organ chambers similarly relaxed to acetylcholine (EC50, 0.07 microM; maximum response, 79 +/- 5% relaxation). Hemoglobin was utilized to inactivate endothelium-derived relaxing factor (EDRF), resulting in reversal of acetylcholine vasodilation in both the microvessels (92 +/- 3.2% reversal) and the large epicardial vessels (117 +/- 9%). Hemoglobin had no effect on passively distended or preconstricted microvessels. Vasopressin constricted resistance vessels by 22.3 +/- 5.9 microns at 500 microU/ml. Hemoglobin potentiated this response by 100%, suggesting that vasopressin elicited EDRF release. In large coronary arteries, however, vasopressin elicited endothelium-dependent dilation with maximal relaxation of 36 +/- 9% at 3,000 microU/ml. Thrombin produced endothelium-dependent relaxation of large epicardial arterial rings but only constricted coronary microvessels. The response to thrombin was not altered by hemoglobin. This study demonstrates that the endothelium of coronary microvessels, like that of larger vessels, importantly modulates vascular reactivity to selected agents. Furthermore, major differences exist between large and small coronary arteries in their response to vasopressin and thrombin.

Report this publication


Seen <100 times