Affordable Access

Changes in free amino acid concentrations in serum, brain, and CSF throughout embryogenesis.

Authors
  • Huether, G
  • Lajtha, A
Type
Published Article
Journal
Neurochemical research
Publication Date
Feb 01, 1991
Volume
16
Issue
2
Pages
145–150
Identifiers
PMID: 1679206
Source
Medline
License
Unknown

Abstract

Using the developing chick embryo as a model and a very sensitive micromethod for amino acid analysis, a complete analysis is presented of the developmental changes in free amino acid concentration in the blood, in the CSF, and in two different brain regions (optic lobe and frontal lobe) of the chick embryo (from day 4 of incubation, until day 5 post hatching). The developmental profile of Lys is the only one that is almost identical in all three compartments. The developmental profiles of the serum and of the brain are very similar for Arg and Phe, less so for Leu and Gly, and towards the end of the embryonic period, similar also for Val, Ile, Trp, and Met. The amino acid concentrations in the CSF are either much lower than in serum and brain already at the earliest stages, or they progressively decline to levels lower than those in brain and serum, most rapidly between day 6 and 8 of embryonic life. The concentrations of neuroactive amino acids (Gln, Glu, Asp, GABA, Tau, and Gly) in both brain regions begin to increase very early, and continue to rise, except Tau, which goes through a maximum at day 8. Comparative analysis of the developmental profiles of each amino acid in serum, brain, and CSF reveals that the blood supply and the cellular uptake, retention, and metabolism by neural cells are the major determinants of the free amino acid pool of the developing brain.

Report this publication

Statistics

Seen <100 times