Affordable Access

CH(A2Delta) Formation in hydrocarbon combustion: the temperature dependence of the rate constant of the reaction C2H + O2--> CH(A2Delta) + CO2.

Authors
  • Elsamra, Rehab M I
  • Vranckx, Stijn
  • Carl, Shaun A
Type
Published Article
Journal
The journal of physical chemistry. A
Publication Date
Nov 17, 2005
Volume
109
Issue
45
Pages
10287–10293
Identifiers
PMID: 16833323
Source
Medline
License
Unknown

Abstract

The temperature dependence of the rate constant of the chemiluminescence reaction C2H + O2 --> CH(A) + CO2, k1e, has been experimentally determined over the temperature range 316-837 K using pulsed laser photolysis techniques. The rate constant was found to have a pronounced positive temperature dependence given by k1e(T) = AT(4.4) exp(1150 +/- 150/T), where A = 1 x 10(-27) cm(3) s(-1). The preexponential factor for k1e, A, which is known only to within an order of magnitude, is based on a revised expression for the rate constant for the C2H + O(3P) --> CH(A) + CO reaction, k2b, of (1.0 +/- 0.5) x 10(-11) exp(-230 K/T) cm3 s(-1) [Devriendt, K.; Van Look, H.; Ceursters, B.; Peeters, J. Chem. Phys. Lett. 1996, 261, 450] and a k2b/k1e determination of this work of 1200 +/- 500 at 295 K. Using the temperature dependence of the rate constant k1e(T)/k1e(300 K), which is much more accurately and precisely determined than is A, we predict an increase in k(1e) of a factor 60 +/- 16 between 300 and 1500 K. The ratio of rate constants k2b/k1e is predicted to change from 1200 +/- 500 at 295 K to 40 +/- 25 at 1500 K. These results suggest that the reaction C2H + O2 --> CH(A) + CO2 contributes significantly to CH(A-->X) chemiluminescence in hot flames and especially under fuel-lean conditions where it probably dominates the reaction C2H + O(3P) --> CH(A) + CO.

Report this publication

Statistics

Seen <100 times