Affordable Access

Publisher Website

Myosin-IXA Regulates Collective Epithelial Cell Migration by Targeting RhoGAP Activity to Cell-Cell Junctions

Authors
Journal
Current Biology
0960-9822
Publisher
Elsevier
Publication Date
Volume
22
Issue
4
Identifiers
DOI: 10.1016/j.cub.2012.01.014
Disciplines
  • Biology

Abstract

Summary Background Epithelial tissues undergo extensive collective movements during morphogenesis, repair, and renewal. Collective epithelial cell migration requires the intercellular coordination of cell-cell adhesions and the establishment of anterior-posterior polarity, while maintaining apical-basal polarity, but how this is achieved at the molecular level is not well understood. Results Using an RNA interference-based screen to identify Rho family GTPase regulators required for the collective migration of human bronchial epithelial cells, we identified myosin-IXA (gene name: Myo9a). Depletion of myosin-IXA, a RhoGAP and actin motor protein, in collectively migrating cells led to altered organization of the actin cytoskeleton and tension-dependent disruption of cell-cell adhesions, followed by an inability to form new adhesions resulting in cell scattering. Closer examination revealed that myosin-IXA is required during the formation of junction-associated actin bundles soon after cell-cell contact. Structure-function analysis of myosin-IXA revealed that the motor domain is necessary and sufficient for binding to actin filaments, whereas expression of the RhoGAP domain partially rescued the cell scattering phenotype induced by myosin-IXA depletion. Finally, a fluorescence resonance energy transfer biosensor revealed a significant increase in Rho activity at nascent cell-cell contacts in myosin-IXA depleted cells compared to controls. Conclusion We propose that myosin-IXA locally regulates Rho and the assembly of thin actin bundles associated with nascent cell-cell adhesions and that this is required to sustain the collective migration of epithelial cells.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments