Affordable Access

Cellulose-Lignin Interactions (A Computational Study).

  • C. J. Houtman
  • R. H. Atalla
Publication Date
Mar 01, 1995


Within a broader program of study of the molecular structure of plant cell walls, molecular dynamics calculations were used to explore the character of the motion of lignin model compounds near a cellulose surface. Model cellulose microfibrils, which have a large number of hydroxyl groups on the surface, appear to have a net attractive interaction with the lignin models examined in this study. The lignin monomer coniferyl alcohol rapidly adsorbed onto the surface from a water layer after it was released 13 A from the surface. The major long-range force responsible for this adsorption is likely electrostatic. The attractive interaction is sufficient to restrict the motion of coniferyl alcohol when it is within 1 A of the surface and to orient the phenyl ring parallel to the surface. The [beta]-O-4-linked trimer also was observed to adsorb onto the surface with two of its phenyl rings parallel to the surface. These results suggest a mechanism by which the polysaccharide component of the plant cell wall could influence the structure of lignin. Furthermore, they provide a rationalization of the experimental observation that polysaccharides can change the course of dehydrogenation polymerization of cinnamyl alcohols.


Seen <100 times