Affordable Access

Publisher Website

HIV infection of fetal human astrocytes: the potential role of a receptor-mediated endocytic pathway

Brain Research
Publication Date
DOI: 10.1016/s0006-8993(98)01371-7
  • Hiv
  • Aids
  • Central Nervous System
  • Astrocytes
  • Receptor
  • Endocytosis
  • Biology
  • Chemistry
  • Medicine


Abstract HIV infects microglia and astrocytes both in vivo and in vitro. Although there is a significant amount of information about microglial infection, data regarding astrocytes are more limited. For example, little is known about the initial membrane events occurring between HIV and astrocytes. Also, the mechanism by which HIV enters these cells remains to be determined. To address these questions, we exposed human astrocyte cultures to either HIV or to the HIV glycoprotein gp120. The cultures were analyzed for viral infection and gp120 binding to cultured cells by light and electron microscopy (EM) with and without immunocytochemistry, respectively; ligand-receptor biochemistry; and, Western, Northern and Southern blot analyses. The results of these studies showed that HIV binds to astrocytes via gp120 and a cell surface molecule weighing approximately 65 kDa that is neither CD4 nor galactocerebroside. Furthermore, binding of gp120 to astrocytes was concentration dependent and displayed a curve consistent with ligand-receptor binding. Additionally, radiolabeled gp120 binding was displaced by unlabeled gp120 but not by deglycosylated gp120, suggesting that the binding was specific. By EM, HIV virions were seen in clathrin-coated pits and in cytoplasmic vacuoles. This suggests linkage, in astrocytes, between a plasma membrane-associated protein that can act as a receptor for HIV and an endosomal pathway.

There are no comments yet on this publication. Be the first to share your thoughts.