Affordable Access

deepdyve-link
Publisher Website

The Cdk5-Mcl-1 axis promotes mitochondrial dysfunction and neurodegeneration in a model of Alzheimer's disease.

Authors
  • Nikhil, Kumar1
  • Shah, Kavita2
  • 1 Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
  • 2 Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA [email protected]e.edu.
Type
Published Article
Journal
Journal of Cell Science
Publisher
The Company of Biologists
Publication Date
Sep 15, 2017
Volume
130
Issue
18
Pages
3023–3039
Identifiers
DOI: 10.1242/jcs.205666
PMID: 28751497
Source
Medline
Keywords
License
Unknown

Abstract

Cdk5 deregulation is highly neurotoxic in Alzheimer's disease (AD). We identified Mcl-1 as a direct Cdk5 substrate using an innovative chemical screen in mouse brain lysates. Our data demonstrate that Mcl-1 levels determine the threshold for cellular damage in response to neurotoxic insults. Mcl-1 is a disease-specific target of Cdk5, which associates with Cdk5 under basal conditions, but is not regulated by it. Neurotoxic insults hyperactivate Cdk5 causing Mcl-1 phosphorylation at T92. This phosphorylation event triggers Mcl-1 ubiquitylation, which directly correlates with mitochondrial dysfunction. Consequently, ectopic expression of phosphorylation-dead T92A-Mcl-1 fully prevents mitochondrial damage and subsequent cell death triggered by neurotoxic treatments in neuronal cells and primary cortical neurons. Notably, enhancing Mcl-1 levels offers comparable neuroprotection to that observed upon Cdk5 depletion, suggesting that Mcl-1 degradation by direct phosphorylation is a key mechanism by which Cdk5 promotes neurotoxicity in AD. The clinical significance of the Mcl-1-Cdk5 axis was investigated in human AD clinical specimens, revealing an inverse correlation between Mcl-1 levels and disease severity. These results emphasize the potential of Mcl-1 upregulation as an attractive therapeutic strategy for delaying or preventing neurodegeneration in AD.

Report this publication

Statistics

Seen <100 times