Affordable Access

Ambulatory measurement of ground reaction force and estimation of ankle and foot dynamics

Publication Date
  • Medicine
  • Physics


PII: 0021-9290(94)00185-7 Pergamon J. Biomechanics, Vol. 28, No. 11, pp. 1369%1376,1995 Copyri& 0 1995 Elsevicr Science Ltd hinted in Great Britain. All rifits reserved 0021-9290/95 $9.50 + .oO 0021-9290(94)00185-J AN INVERSE DYNAMICS MODEL FOR THE ANALYSIS, RECONSTRUCTION AND PREDICTION OF BIPEDAL WALKING Bart Koopman, Henk .I. Grootenboer and Henk J. de Jongh University of Twente, Faculty of Mechanical Engineering, Laboratory of Biomedical Engineering, P.O. Box 217,750O AE Enschede, The Netherlands Abstract-Walking is a constrained movement which may best be observed during the double stance phase when both feet contact the floor. When analyzing a measured movement with an inverse dynamics model, a violation of these constraints will always occur due to measuring errors and deviations of the segments model from reality, leading to inconsistent results. Consistency is obtained by implementing the constraints into the model. This makes it possible to combine the inverse dynamics model with optimization techniques in order to predict walking patterns or to reconstruct non-measured rotations when only a part of the three-dimensional joint rotations is measured. In this paper the outlines of the extended inverse dynamics method are presented, the constraints which detine walking are defined and the optimization procedure is described. The model is applied to analyze a normal walking pattern of which only the hip, knee and ankle flexions/extensions are measured. This input movement is reconstructed to a kinematically and dynam- ically consistent three-dimensional movement, and the joint forces (including the ground reaction forces) and joint moments of force, needed to bring about thts movement are estimated. INTRODUCIION Numerous models have been developed to simulate human walking, based on segment models in varying complexity from three (McMahon, 1984) up to 17 segments (Hatze, 198la). Symmetry between the right and left leg is often assumed to reduc

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times