Affordable Access

CCAAT displacement protein, a regulator of differentiation-specific gene expression, binds a negative regulatory element within the 5' end of the human papillomavirus type 6 long control region.

Authors
Type
Published Article
Journal
Journal of virology
Publication Date
Volume
71
Issue
3
Pages
2013–2022
Identifiers
PMID: 9032333
Source
Medline

Abstract

We have reported previously that a 636-bp fragment spanning the 5' two-thirds of the human papillomavirus type 6 (HPV6)-W50 long control region (LCR) functions as a transcriptional silencer (A. Farr, S. Pattison, B.-S. Youn, and A. Roman, J. Gen. Virol. 76:827-835, 1995). We have utilized nested deletion analyses to implicate a 66-bp sequence which appears to be critical for this activity. A comparison of the transcriptional regulatory activities of the LCRs of HPV6-W50 and HPV6b (which has a 94-bp deletion, resulting in the elimination of the 66-bp sequence) indicates that sequences within the 94-bp region negatively regulate the activity of the intact HPV6 LCR. Two sequence-specific DNA-protein interactions were visualized via electrophoretic mobility shift assays. One of the binding events is mediated by the transcriptional repressor CCAAT displacement protein (CDP), a factor which is active in undifferentiated cells but inactive in terminally differentiated cells. This conclusion is based on the following three lines of evidence: (i) a consensus CDP binding site oligonucleotide serves as a competitor in band shift assays, (ii) the band shift complex is not seen when a CDP-negative nuclear extract is used, and (iii) anti-CDP antiserum specifically inhibits the binding. These studies identify a DNA-protein interaction occurring within the 5' end of the LCR which may be important in maintaining the tight link between keratinocyte differentiation and HPV gene expression.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments