Affordable Access

PIAS-1 is a checkpoint regulator which affects exit from G1 and G2 by sumoylation of p73.

Molecular and Cellular Biology
American Society for Microbiology
Publication Date
  • Biology


p73 is a recently described member of the p53 family, and, like p53, it undergoes a number of posttranslational modifications. Here we show, by yeast two-hybrid screening, pull-down assays, and coimmunoprecipitation, that p73alpha, -beta, and -gamma bind to the protein inhibitor of activated STAT-1 (PIAS-1) and that this binding stabilizes p73. PIAS-1 also sumoylates p73alpha, although not the C-terminally truncated isoforms p73beta and -gamma, and this requires the RING finger domain of PIAS-1. The DeltaNp73alpha isoform can also bind, and be sumoylated by, PIAS-1. PIAS-1-mediated sumoylation decreases p73 transcriptional activity on several target promoters, such as Bax. p73 is colocalized in the nucleus with PIAS-1, and sumoylated p73 is located exclusively in the nuclear matrix. PIAS-1 is expressed predominantly during S phase, and PIAS-1 overexpression reduces p73-mediated transcription of p21, with a reduction of cells in G(1) and cell cycle reentry. Inhibition of endogenous PIAS-1 by RNA interference reduces the proportion of cells in S phase and induces G(2) arrest. These data suggest that PIAS-1, acting partly through binding and sumoylation of p73, is an important component of the cell cycle machinery.

There are no comments yet on this publication. Be the first to share your thoughts.