Affordable Access

Access to the full text

Categorified canonical bases and framed BPS states

Authors
  • Allegretti, Dylan G. L.1
  • 1 Mathematical Sciences Research Institute, Berkeley, USA , Berkeley (United States)
Type
Published Article
Journal
Selecta Mathematica
Publisher
Springer International Publishing
Publication Date
Nov 08, 2019
Volume
25
Issue
5
Identifiers
DOI: 10.1007/s00029-019-0518-3
Source
Springer Nature
Keywords
License
Yellow

Abstract

We consider a cluster variety associated to a triangulated surface without punctures. The algebra of regular functions on this cluster variety possesses a canonical vector space basis parametrized by certain measured laminations on the surface. To each lamination, we associate a graded vector space, and we prove that the graded dimension of this vector space gives the expansion in cluster coordinates of the corresponding basis element. We discuss the relation to framed BPS states in N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=2$$\end{document} field theories of class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}$$\end{document}.

Report this publication

Statistics

Seen <100 times