Affordable Access

Carrollian Physics at the Black Hole Horizon

Authors
  • Donnay, Laura
  • Marteau, Charles
Publication Date
Apr 12, 2019
Source
HAL-UPMC
Keywords
Language
English
License
Unknown
External links

Abstract

We show that the geometry of a black hole horizon can be described as a Carrollian geometry emerging from an ultra-relativistic limit where the near-horizon radial coordinate plays the role of a virtual velocity of light tending to zero. We prove that the laws governing the dynamics of a black hole horizon, the null Raychaudhuri and Damour equations, are Carrollian conservation laws obtained by taking the ultra-relativistic limit of the conservation of an energy-momentum tensor; we also discuss their physical interpretation. We show that the vector fields preserving the Carrollian geometry of the horizon, dubbed Carrollian Killing vectors, include BMS-like supertranslations and superrotations and that they have non-trivial associated conserved charges on the horizon. In particular, we build a generalization of the angular momentum to the case of non-stationary black holes. Finally, we discuss the relation of these conserved quantities to the infinite tower of charges of the covariant phase space formalism.

Report this publication

Statistics

Seen <100 times