Affordable Access

Ca2+ stores in smooth muscle cells: Ca2+ buffering and coupling to AVP-evoked inositol phosphate synthesis.

Authors
  • Berman, D M
  • Sugiyama, T
  • Goldman, W F
Type
Published Article
Journal
The American journal of physiology
Publication Date
Jan 01, 1994
Volume
266
Issue
1 Pt 1
Identifiers
PMID: 8304422
Source
Medline
License
Unknown

Abstract

Cytosolic Ca2+ concentrations ([Ca2+]cyt) and [3H]inositol phosphates ([3H]InsP) were correlated while decreasing the Ca2+ content of sarcoplasmic reticulum (SR) stores in cultured A7r5 cells at rest and after activation with 8-arginine vasopressin (AVP). Decreasing Ca2+ influx by reducing extracellular Ca2+ or by treatment with verapamil had no effect on resting [Ca2+]cyt but significantly inhibited the AVP-evoked Ca2+ transients (delta Ca2+). Neither treatment affected basal [3H]InsP, but both treatments increased AVP-evoked synthesis of [3H]InsP. Likewise, basal [3H]InsP were unaffected by brief (10-30 s) exposures to thapsigargin (TG), while AVP-induced [3H]InsP synthesis was significantly augmented. Similar treatment with TG rapidly increased resting [Ca2+]cyt and decreased SR Ca2+ by 9-25% as manifested by decreased delta Ca2+. By contrast, ryanodine induced slow increases in [Ca2+]cyt that stabilized within 30 min; subsequent AVP-induced delta Ca2+ were attenuated by 50%. Ryanodine had no effect on either basal or stimulated [3H]InsP levels. Agents that elevate adenosine 3',5'-cyclic monophosphate (cAMP) such as caffeine, 8-bromo-cAMP, and forskolin inhibited AVP-evoked [3H]InsP formation. These observations provide further characterization of a communication pathway between the AVP-sensitive Ca2+ stores in the SR and the plasmalemmal enzyme system involved in the synthesis of inositol 1,4,5-trisphosphate. This pathway is manifested by an inverse relationship between the Ca2+ content of an AVP-sensitive, ryanodine-insensitive SR Ca2+ store and evoked [3H]InsP synthesis and may represent an important component in the tonic regulation of resting [Ca2+]cyt and vasoconstrictor- and hormone-evoked SR Ca2+ release.

Report this publication

Statistics

Seen <100 times