Affordable Access

Identifizierung und Charakterisierung essentieller Gene/Proteine der humanpathogenen Hefe Candida albicans als mögliche Wirkstoff-Zielorte

Authors
Publication Date
Keywords
  • Candida Albicans
  • Antimykotikum
  • Ddc:570

Abstract

Mit Hilfe des Modellorganismus S. cerevisiae konnten alle bisher unbekannten Gene der Gluconeogenese und des Glyoxylat-Zyklus des opportunistisch humanpathogenen Pilzes C. albicans isoliert werden. Erste Hinweise führten zu der Annahme, dass diese Stoffwechselwege möglicherweise essentiell für das vegetative Wachstum sind, so dass sie gute Wirkorte für neu zu entwickelnde Antimycotica darstellen könnten. In dieser Arbeit wurde gezeigt, dass diese Stoffwechselwege ungeeignete Wirkorte für Antimycotica sind, da sie weder essentiell für das vegetative Wachstum sind noch von ihnen Virulenzfaktoren von C. albicans beeinflusst werden (z.B. Hyphenentwicklung). Die Regulation der Gluconeogenese und des Glyoxylat-Zyklus in S. cerevisiae ist gut untersucht und alle Ergebnisse mit C. albicans zeigen, dass die Regulation dieser Stoffwechselwege zwischen diesen beiden Hefen sehr konserviert ist. Es wurde eine Methode für die Identifizierung von essentiellen Genen durch funktionelle Komplementation in S. cerevisiae entwickelt. Diese sogenannte Split-Marker-Selektion basiert auf einer Cre/loxP-vermittelten induzierten Deletion eines essentiellen Gens von S. cerevisiae und der Komplementation des resultierenden letalen Phänotyps durch ein heterolog exprimiertes Gen in einer DNS Genbank. Die Methode ist auch für die Funktionsanalyse von essentiellen Genen in S. cerevisiae geeignet (z.B. Identifizierung von Suppressoren, Analyse finaler Phänotypen). Mit Hilfe der Split-Marker-Selektion wurde das putativ essentielle Gen NEP1 ("nuclear essential protein") von C. albicans identifiziert. Die Funktionsanalyse des homologen Gens in S. cerevisiae ergab, dass das Gen für ein Mikrotubuli-assoziiertes Protein kodiert, das in allen Eukaryonten existiert. Es erwies sich, dass das menschliche Homolog in S. cerevisiae funktionell ist und den letalen Phänotyp einer NEP1 Deletion in S. cerevisiae überwindet. Es zeigte sich weiterhin, dass das menschliche Homolog in S. cerevisiae nicht an Mikrotubuli assoziiert ist. Dies deutet darauf hin, dass die Mikrotubuli-Assoziation nicht für die essentielle Funktion von Nep1p nötig ist. Das bisher uncharakterisierte Protein Ydl148p wurde als Interaktionspartner von Nep1p gefunden. Desweitern konnte SAM2 als Multicopy-Suppressor des konditional letalen Phänotyps (Temperatursensitivität) eines NEP1 Mutantenallels (nep1-ts1) identifiziert werden. Die Suppression wurde hierbei über die erhöhte Konzentration an S-Adenosylmethionin vermittelt. Dieser Cofaktor ist an Methylierungsreaktionen beteiligt, so besteht die Möglichkeit, dass Nep1p eine Methyltransferase ist oder an Methylierungsreaktionen beteiligt ist.

There are no comments yet on this publication. Be the first to share your thoughts.