Affordable Access

Hubble Space Telescope Goddard high-resolution spectrograph H2 rotational spectra of Jupiter's aurora

Authors
Publication Date
Keywords
  • Auroral Spectroscopy
  • Auroral Zones
  • Hydrogen
  • Jupiter Atmosphere
  • Rotational Spectra
  • Temperature Measurement
  • Gas Temperature
  • Spectral Line Width
  • Spectrum Analysis
  • Temperature Distribution
  • Physical
  • Chemical
  • Mathematical & Earth Sciences :: Space Science
  • Astronomy & Astrophysics [G05]
  • Physique
  • Chimie
  • Mathématiques & Sciences De La Terre :: Aérospatiale
  • Astronomie & Astrophysique [G05]

Abstract

We have observed the emission spectrum from Jupiter's north auroral atmosphere with 0.57 A spectral resolution over 1204-1241 A. Bright emissions have been detected from 50 deg to 60 deg latitude at locations consistent with 6 to 30 R [SUB]J[/SUB] auroral ovals, with much fainter emissions away form the auroral ovals. The emission spectrum is well fitted by both laboratory spectra and theoretical models of optically thin electron excited H2, with added Doppler-broadened Lyman Alpha emission. The observed Lyman Alpha emission wings extend more than 1 A from line center and appear correlated in strength with the H2 brightness. Individual rotational lines in the H2 Werner band system are resolved, allowing a determination of the H2 rotational temperature at the altitude of the emission. We derive best-fit temperatures from 400-450 to 700-750 K, with the auroral emission layer temperature changing either across the auroral oval or over several days' time. These observations demonstrate for the first time the ability to measure the observed rapid H2 temperature variations across Jupiter's auroral atmosphere.

There are no comments yet on this publication. Be the first to share your thoughts.