Affordable Access

Publisher Website

Stable carbon isotope discrimination in rice field soil during acetate turnover by syntrophic acetate oxidation or acetoclastic methanogenesis

Geochimica et Cosmochimica Acta
Publication Date
DOI: 10.1016/j.gca.2010.12.019


Abstract Rice fields are an important source for the greenhouse gas methane. In Italian rice field soil CH 4 is produced either by hydrogenotrophic and acetoclastic methanogenesis, or by hydrogenotrophic methanogenesis and syntrophic acetate oxidation when temperatures are below and above about 40–45 °C, respectively. In order to see whether these acetate consumption pathways differently discriminate the stable carbon isotopes of acetate, we measured the δ 13C of total acetate and acetate-methyl as well as the δ 13C of CO 2 and CH 4 in rice field soil that had been pre-incubated at 45 °C and then shifted to different temperatures between 25 and 50 °C. Acetate transiently accumulated to about 6 mM, which is about one-third of the amount of CH 4 produced, irrespective of the incubation temperature and the CH 4 production pathway involved. However, the patterns of δ 13C of the CH 4 and CO 2 produced were different at low (25, 30, 35 °C) versus high (40, 45, 50 °C) temperatures. These patterns were consistent with CH 4 being exclusively formed by hydrogenotrophic methanogenesis at high temperatures, and by a combination of acetoclastic and hydrogenotrophic methanogenesis at low temperatures. The patterns of δ 13C of total acetate and acetate-methyl were also different at high versus low temperatures, indicating the involvement of different pathways of production and consumption of acetate at the two temperature regimes. Isotope fractionation during consumption of the methyl group of acetate was more pronounced at low ( α = 1.010–1.025) than at high ( α = 1.0–1.01) temperatures indicating that acetoclastic methanogenesis exhibits a stronger isotope effect than syntrophic acetate oxidation. Small amounts of propionate also transiently accumulated and were analyzed for δ 13C. The δ 13C values slightly increased (by about 10‰) during production and consumption of propionate, but were not affected by incubation temperature. Collectively, our results showed distinct isotope discrimination for different paths of acetate (and propionate) production and consumption, albeit differences were only small, and discrimination between methanogenic and syntrophic acetate consumption in nature may be difficult to detect.

There are no comments yet on this publication. Be the first to share your thoughts.


Seen <100 times