Affordable Access

Pharmacogenetics of the human glutathione S-transferase P1 gene in the metabolism and therapeutic efficacy of cis-diamminedichloroplatinum

Authors
Publisher
[email protected] Texas Medical Center
Publication Date
Keywords
  • Biology
  • Molecular|Health Sciences
  • Pharmacology
Disciplines
  • Biology
  • Medicine

Abstract

The human GSTP1 gene has been shown, conclusively, to be polymorphic. The three main GSTP1 alleles, GSTP1*A, GSTP1*B, and GSTP1*C, encode proteins which differ in the 3-dimensional structure of their active sites and in their function in phase II metabolism of carcinogens, mutagens, and anticancer agents. Although, it is well established that GSTP1 is over expressed in many human tumors and that the levels of GSTP1 expression correlate directly with tumor resistance to chemotherapy and inversely with patient survival, the significance of the polymorphic GSTP1 gene locus on tumor response to chemotherapy remains unclear. The goal of this project was to define the role and significance of the polymorphic GSTP1 gene locus in GSTP1-based tumor drug resistance and as a determinant of patient response to chemotherapy. The hypothesis to be tested was that the polymorphic GSTP1 gene locus will confer to tumors a differential ability to metabolize cisplatin resulting in a GSTP1 genotype-based sensitivity to cisplatin. The study examined: (a) whether the different GSTP 1 alleles confer different levels of cellular protection against cisplatin-induced cytotoxicity, (b) whether the allelic GSTP1 proteins metabolize cisplatin with different efficiencies, and (c) whether the GSTP1 genotype is a determinant of tumor response to cisplatin therapy. The results demonstrate that the GSTP1 alleles differentially protect tumors against cisplatin-induced apoptosis and clonogenic cell kill in the rank order: GSTP1*C > GSTP1*B > GSTP1*A. The same rank order was observed for the kinetics of GSTP1-catalyzed cisplatin metabolism, both in cell-free and cellular systems, to the rate-limiting monoglutathionyl-platinum metabolite, which was characterized, for the first time, by mass spectral analysis. Finally, this study demonstrates that both GSTP1 genotype and the level of GSTP1 expression significantly contribute to tumor sensitivity to cisplatin treatment. Overall, the results of this project show that the polymorphic GSTP1 gene locus plays a significant role in tumor sensitivity to cisplatin treatment. Furthermore, these studies have contributed to the overall understanding of the significance of the polymorphic GSTP1 gene locus in tumor resistance to cancer chemotherapy and have provided the basis for further investigations into how this can be utilized to optimize and individualize cancer chemotherapy for cancer patients. ^

There are no comments yet on this publication. Be the first to share your thoughts.