Affordable Access

Download Read

Optimal Code Set Selection and Security Issues in Spectral Phase-Encoded Time Spreading (SPECTS) OCDMA Systems

Journal of Lightwave Technology
Institute of Electrical and Electronics Engineers
  • Engineering
  • Design
  • Telecommunications
  • Performance
  • Optics
  • Capacity
  • Optical Fiber Communications
  • Electrical & Electronic
  • Coherent
  • Optical Code Division Multiple Access
  • Multiple Access Interference (Mai)
  • Phase Coding
  • Division Multiple-Access
  • Optical Cdma Networks
  • O-Cdma


In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.

There are no comments yet on this publication. Be the first to share your thoughts.